Geometry Review Guide

Paul Swan, Linda Marshall.

Geometry Review Guide

The intention of this Review Guide is to assist you to find your strengths and weaknesses in Geometry. The booklet is divided into aspects of Geometry: 2D Shape; 3D Shape; Similarity and Scale; Symmetry; Co-ordinates and Transformations. Test yourself on the Geometry Check before you read through the rest of the guide. Once you have checked your answers, work through the sections where you need assistance.

* For further information, see Bana, J., Marshall, L., and Swan, P. (2005). Maths Terms and Tables. Perth: R.I.C. Publications.

Test yourself on the Geometry Check before you read through the rest of the guide. Once you have checked your answers, work through the sections where you need assistance.

1. The diagrams show
(a) triangular prisms
(b) rectangular prisms
(c) triangular pyramids
(d) rectangular pyramids

(e) none of these
2. The diagram shows a solid which has
(a) 10 vertices and 15 edges
(b) 9 vertices and 12 edges
(c) 15 vertices and 7 edges
(d) 15 vertices and 10 edges

(e) none of these
3. The solid drawn here is resting on the ground. It has
(a) 4 horizontal and 1 vertical face
(b) 1 horizontal and 2 vertical faces
(c) 1 horizontal and 4 vertical faces

(d) 2 horizontal and 1 vertical face
(e) none of these
4. Which shape would be formed if the triangle drawn here spun very fast around the axis through XY?

(a)

(b)

(d)

(e) none of these
5. Here is a drawing of a pentagonal prism.

Which outline below could be cut out and folded along the dotted lines to make the best model of this pentagonal prism?

(b)
(c)

(e) None of these
(d)

6 Which shapes drawn here are parallelograms:
(a) all the shapes
(b) all except H and I
(c) F and G only
(d) F only
(e) none of these answers

7 The size of angle M in triangle LMN is
(a) 80°
(b) 90°
(c) 100°
(d) 110°

(e) none of these
8. What is the size of angle Q ?
(a) 70°
(b) 90°
(c) 100°

(d) 110°
(e) none of these
9. To move the shape from position G to position H , slide it
(a) down 2, right 5
(b) left 5 , up 2
(c) down 1 , right 1
(d) down 2 , right 1
(e) none of these

10. Which picture shows the correct position of the mirror image for the object O ?
(a)

(b)

(c)

(d)

(e) none of these

11. The shaded part of each picture shows a cardboard shape pinned at point P. The card is given a

 $1 / 4$ turn clockwise. Which dotted outline shows the new position of the card?(a)

(d)

(e) none of these
12. Which picture could be cut and folded so that both halves match?
(a)

(b)

(c)

(d)

(e) none of these
13. Name the point southwest of D, and give the direction from D to G .
A.
B.
(a) E, SE
(b) F, NW
C.
E. \quad.
D.
G• $\quad \uparrow \mathbf{N}$
(c) H, NW
(d) F, SE
H. \quad I.
(e) none of these
14. What directions would you give to travel from

X to Y along the path shown?
(a) Start at $(2,3)$ and go to $(5,3)$ then finish at $(2,6)$
(b) Start at $(2,3)$ and go to $(3,5)$ then finish at $(6,2)$
(c) Start at $(3,2)$ and go to $(5,3)$ then finish at (2, 6)
(d) Start at $(6,2)$ and go to $(3,5)$ then finish at (2, 2)
(e) none of these

15. Name the point at $(4,2)$ and give the co-ordinates of point D.
(a) $\quad \mathrm{B},(3,1)$
(b) $\mathrm{C},(1,3)$
(c) $\quad \mathrm{B},(1,3)$
(d) $\quad \mathrm{C},(3,1)$
(e) none of these

16. How many of the shape N would be needed to make shape M ?
(a) 16
(b) 15
(c) 8
(d) 4
(e) none of these

>>> Answers to Geometry Check

1. d
2. a
3. c
4. b
5. a
6. c
7. c
8. c
9. a
10. d
11. a
12. a
13. d
14. b
15. a
16. a

How did you do?
Use the section indicators in the left column of the Geometry check to locate the sections you would like to improve on.

TWO DIMENSIONAL SHAPES

Two dimensional shapes that we will investigate in this section are called polygons. 'Poly' means 'many' and 'gon' means 'side', e.g. many sided figures. Two dimensional shapes have length and width, e.g. a rectangle or square has length and width, a triangle has base and height.

Poly: "many"

Rectangle

Triangle

Gon: "sides"

Congruent shapes have the same size and shape.

The main shapes that you should recognise are:

3 sides	triangles
4 sides	quadrilaterals
5 sides	pentagons
6 sides	hexagons
8 sides	octagons
10 sides	decagons

Regular polygons are those that have all sides congruent (i.e. of equal length) and all angles congruent (i.e. of equal size).

See p. 87 of Maths Terms and Tables.

SIDED POLYGONS

Triangles are three sided polygons.

Scalene

Isosceles (two congruent sides)

Equilateral (all sides and angles congruent) (this is a regular polygon)

SIDED POLYGONS

Quadrilaterals are four sided polygons.

Quadrilateral - any four sided figure

Square - all sides congruent each angle is 90°

This is a regular quadrilateral.

Rombus - all sides congruent opposite sides parallel opposite angles congruent

Rectangle - opposite sides congruent each angle is 90°

Parallelogram - opposite sides congruent and parallel opposite angles congruent

Trapezium- only one pair of parallel sides *See p. 92 of Maths Terms and Tables.

SIDED POLYGONS

Pentagons are five sided polygons.

Non-regular

Regular - all sides congruent all angles congruent (108)

SIDED POLYGONS

Hexagons are six sided polygons.

Non-regular

Regular- all sides congruent
all angles congruent $\left(120^{\circ}\right)$

SIDED POLYGONS

Octagons are eight sided polygons.

Non-regular

Regular- all sides congruent all angles congruent (135°)

SIDED POLYGONS

Decagons are ten sided polygons.

Non-regular

Regular- all sides congruent all angles congruent (144°)

1. - Name each of these shapes below.

- Form a four sided shape by joining the mid-points of each shape.
- Name these new shapes:
a)

b)

2. Draw in the diagonals for each shape below
a)

b)

3. Which figures have:
(i) Congruent diagonals?
(ii) Perpendicular diagonals?
(iii) Diagonals that bisect each other?

- Intersecting lines are those that cross each other at any point - Bisecting lines cut each other in half

4 Classify the following shapes according to the number of sides;

a) triangles
b) quadrilaterals
c) pentagons
d) hexagons
e) none of the above

5 True or false:

i) All trapeziums are parallelograms.
ii) All rectangles are parallelograms.
iii) All parallelograms are rhombuses.
iv) All squares are rhombuses.
v) All trapeziums are quadrilaterals.

Pg, 5

1.

a) A square within a square
b) rectangle, rhombus
c) rhombus, rectangle
d) trapezium, parallelogram
e) parallelogram, parallelogram
f)
quadrilateral, parallelogram

2
a)

b)

3
i: a, b
$i i: a, d$
iii: a, b, c, d

Pg, 6

4
a) E, J
b) $\mathrm{A}, \mathrm{D}, \mathrm{F}$
c) G, H
d) $\quad \mathrm{B}, \mathrm{I}$
e) C

5 i) False
ii) True
iii) False
iv) True
v) True

SECTION 2. THREE DIMENSIONAL OBJECTS

POLLYHEDRA

THREE DIMENSIONAL OBJECTS

Three dimensional shapes that we will investigate in this section are called polyhedra.

Poly means 'many' and hedra means 'faces'.

3D objects are those that have length, width, \& height.

These are polyhedra. Notice that all the faces are polygons.

The main 3-dimensional shapes that you should recognise are prisms and pyramids.

pyramid.

Prisms are shapes with two opposite ends being congruent polygons and all other faces being rectangles. Notice that the two triangles are the same shape and size (.i.e. congruent) and the other three sides are rectangles.

Triangular prism

Some other prisms are:

rectangular prism

hexagonal prism

pentagonal prism

An important aspect of your prism is the number of vertices (corners), edges and faces. You need to be able to recognise these properties.

For example: the triangular prism has:

6 vertices or corners

(a vertex is where three faces meet)

5 faces

(3 rectangular faces and 2 triangular faces)

9 edges

(an edge is where two faces meet)

If we decide to unfold the triangular prism we would obtain the following shape:

This is called a NET and it is a two dimensional representation of a three dimensional object.

Here is another example of a NET created from a hexagonal prism

Name each shape below and determine the number of vertices, faces and edges.

The information for the triangular prism has been completed for you.

Name	No. of Vertices	No. of Faces	No. of Edges
A. Triangular Prism	6	5	9
B.			
C.			
D.			
E.			

Challenge 1: Examine the numbers in the columns and see if you can discover a relationship between them.

E

OBJECTS - PYRAMIDS

A pyramid consists of a base (a polygon) and triangular faces which meet at a point called an apex.

Pyramids are named by their bases

square pyramid

triangular pyramid

hexagonal pyramid

If we decided to unfold the square pyramid we would have the following net:

An important aspect of your pyramid is the number of vertices (corners), edges and faces.

For example: the square pyramid has:
5 vertices or corners

5 faces

8 edges

Check

Name each shape below and determine the number of vertices, faces \& edges.

The information for the square pyramid has been completed for you.

Name	No. of Vertices	No. of Faces	No. of Edges
A. Square Pyramid	5	5	8
B.			
C.			
D.			
E.			

Challenge 2: If you discovered the relationship between the numbers for the prisms, can it be applied here?

[^0]Besides pyramids and prisms you should be able to recognise cones, cylinders and spheres.

CONES

Cones are like pyramids.
They have a circular base.

THEY ARE EASYTO REMEMBER - JUSTTHINK OF ICE-CREAM CONES

CYLINDERS

Cylinders are like prisms.
They have two congruent circular ends.

A COOL DRINK CAN IS AN EXAMPLE OF A CYLINDER

SPHERES

Spheres aren't like prisms and pyramids.

A BALL IS A GOOD EXAMPLE OF A SPHERE.

OBJECTS-SOLUTIONS

Pg. 12

Name	No. of Vertices	No. of Faces	No. of Edges
A. Triangular Prism	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{9}$
B.Square Prism (cube)	8	6	12
C.Rectangular Prism	8	6	12
D.Hexagonal Prism	12	8	18
E.Pentagonal Prism	10	7	15

Challenge 1: $\quad V+F=E+2$ or $V+F-E=2$

Pg. 14

Name	No. of Vertices	No. of Faces	No. of Edges
A. Square Pyramid	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{8}$
B.Triangular Pyramid	4	4	6
C.Hexagonal Pyramid	7	7	12
D.Rectangular Pyramid	5	5	8
E.Pentagonal Pyramid	6	6	10

Challenge 1: Yes, $V+\mathrm{F}=\mathrm{E}+2$

SECTION 3.

CONGRUENCE SUVILARHIV \& SCALE

CONGRUENCE, SIMILARITY, AND SCALE

ONGRUENCE

Two shapes are said to be congruent if they are the same shape and size.
The following pairs of shapes are congruent:

You can test for congruence by measuring or more simply in two dimensions by super-imposing one shape on top of the other.

IMILARITY

Two shapes are said to be similar if they have the same shape. The same shape means that the corresponding angles are congruent and the corresponding sides are in the same proportions. More simply one is a larger scale model of the other, e.g.

Notice that all squares and regular hexagons would be similar.
Not all triangles are similar, e.g.

- the corresponding angles aren't congruent and the corresponding sides are not proportional.

IMILARITY

However, some triangles may be similar, e.g.

$$
\begin{aligned}
& \angle \mathrm{A} \cong \angle \mathrm{D} \\
& \angle \mathrm{~B} \cong \angle \mathrm{E} \\
& \angle \mathrm{C} \cong \angle \mathrm{~F}
\end{aligned}
$$

(angles congruent)

$\frac{\mathrm{AB}}{\mathrm{DF}}=\frac{\mathrm{AC}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}$
(sides proportional)
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ (is similar to)

Are these figures similar, congruent or neither? Give reasons for your answers:
a)

b)

c)

d)

e)

f)

$A B C D$ is similar to $E F G H$

a) How large is the angle H ?
b) How long is EH? HG?

GALE

A practical and realistic way in which you can be introduced to the idea of similarity is by scaling. Most people are familiar with the world of scale in two and three dimensions through model making, maps and photographs, e.g.

Rectangle B is a double scale model of rectangle A. Notice that the lengths of sides of rectangle B are twice as long as the sides of rectangle A. How many rectangles the size of A would fit into B? Therefore what is the increase in area?

Two ways of constructing scale diagrams, in two dimensions are: 1. use of grids 2. use of centre of enlargement

1) Use of grids

a. Same size squares

Shape B is a treble scale ($3 x$) model of shape A.
The lengths of the sides of B are that of A. times 20 mm

b. Different size squares

5 mm

Grids of two different sizes may be used to enlarge or reduce figures.

CALE

2) Use of centre of enlargement

From a point inside or outside the figure (called the centre of enlargement) we can draw a scaled model of the figure. E.g.

(i) Inside the figure

Double scale model of WXYZ

Treble the distance from the centerpoint to each vertex to obtain W'X'Y'Z'.

(ii) Outside the figure

Double scale model of PQR

- Place Centre C anywhere outside the figure.
- Join C to each vertex and double the distance to obtain P'Q'R'.

1. Using C as the centre of enlargement, draw in the indicated scale model of the following.

b) treble scale

Pg. 19
a) similar (congruent angles)
b) neither (sides not in proportion)
c) similar (sides in proportion)
d) neither (sides not in proportion)
e) congruent (have same shape and size)
f) similar (same shape)

Pg. 20
a) $\angle \mathrm{H}=80^{\circ}$
b) $\mathrm{EH}=12 \mathrm{~cm}, \mathrm{HG}=18 \mathrm{~cm}$

Pg, 22
1a)

1b)

1c)

Pg, 22

Scaling Factor	Length of Side	Area
2	doubles $(2 x)$	quadruples (4 x)
3	trebles $(3 x)$	nine times $(9 x)$
4	$4 x$	sixteen times $(16 x)$
5	$5 x$	twenty five times $(25$ $x)$
$1 / 2$	halves $(1 / 2)$	one quarter $(1 / 4 x)$
$1 / 3$	third $(1 / 3)$	one ninth $(1 / 9 x)$

Pg, 24

1a)

1b)

1c)

SECTION 4.

SYMMMEIRY

SYMMETRY

Many shapes in the environment are symmetrical.
Consider this picture of a butterfly:

INE OF SYMMETRY OR REFLECTION / BILATERAL SYMMETRY

Shapes that have reflection symmetry are those where one half of the shape is a mirror reflection of the other half, e.g.

The reflection line is called the line or axis of symmetry.

Some shapes have more than one line of symmetry, e.g.

To test for reflection symmetry you can:

a) Use a mirror or mira to see if one half can be reflected onto the other half.

MIRA

This is a small plastic device that is used to help students gain an understanding of the concept of reflections.

The object is reflected in the plastic, enabling the student to draw the mirror image by looking through the plastic.
b) Try to fold one half onto the other half.

If this is possible then the fold line is the line of symmetry.

1. Show all the lines of symmetry for the following shapes:
a)

b)

c)

d)

2. Complete the following symmetric shapes.

b)

OTATIONAL SYMMETRY OR TURN SYMMETRY

Fans and windmills are examples of objects with rotational symmetry. A shape can be tested for rotational symmetry by tracing the shape, and rotating the tracing around the original shape. If the shape matches other than in the original position then the shape has rotational symmetry.

The rectangle has an order of rotational symmetry of 2, i.e. if you turn the rectangle through 180° it will match the original shape.

a)

b)

c)

d)

NOTE:
All shapes will match if you turn the tracing through 360°. If this is the only place where they match, then these shapes don't have rotational or turn symmetry.

Order of Rotation

The number of times a figure appears to retain its original orientation during one complete rotation about a fixed point.

Determine whether the following shapes have rotational or turn symmetry. (Trace them and move the tracing around a point to see if they match). How many times did you turn the tracing to get back to the original orientation?

2 Decide which letters have:
a) reflectional symmetry only
b) rotational symmetry only
c) both reflectional and rotational symmetry
d) no symmetry

\square

D

U

YMMETRY \& 3D OBJECTS

Three dimensional shapes may also have reflection symmetry and/or rotational symmetry, eg.

If we cut here, we have reflection symmetry.
(Note: planes of symmetry)

If we turn this shape about this line 180° we have rotational symmetry.

1. List some three dimensional shapes or objects in the environment with:
a) reflection symmetry
b) rotational symmetry
2. How does symmetry differ for three dimensional objects in comparison to two dimensional shapes?

Pg, 30

1a)

1b)

1c)

Pg, 31

1a) rotational symmetry of 90°
1b) rotational symmetry of 60°
1c) rotational symmetry of 45°
1d) rotational symmetry of 180°
1e) no rotational symmetry
1f) rotational symmetry of 180°

Pg, 32

2a) reflectional symmetry only
2b) rotational symmetry only
2c) reflectional \& rotational symmetry
2d) no symmetry

3) yes- the type of font will make a difference, eg. $\mathrm{B}, \boldsymbol{B}$

Pg, 33

1a) Depends on the shapes, eg. doors, desks, cupboards.
1b) Fans, windmills, pipes
2)

	2D	3D
Reflectional Symmetry	line of symmetry	plane of symmetry
Rotational Symmetry	centre of rotation	line or axis of rotation

SECTION 5.

CO-ORDDNATJES

CO-ORDINATES

Co-ordinates are a way of assigning numbers (or letters) to points on a plane. Co-ordinates are met frequently in real life situations such as, in maps and street directories.

In locating the point $\mathrm{A}(2,3)$ by convention, the first number is the horizontal co-ordinate (x co-ordinate) and the second number is the vertical co-ordinate (y co-ordinate).

1 On a sheet of grid paper, plot the following sets of points joining consecutive points as you go.
a) $(1,7),(-4,3),(-5,-2),(0,2),(1,7)$
b) $(-5,-2),(0,-6),(5,-2),(6,3),(1,7),(0,2),(5,-2)$
c) $(-4,3),(1,-1),(6,3)$
d) $(1,-1),(0,-6)$

What is the resultant shape?

On a sheet of grid paper, plot the points:
$A(-3,5), \quad B(3,7), \quad C(7,-3), \quad D(-5,-1)$
a) What is the resultant shape?
b) List the co-ordinates of the mid points of $A B, B C, D C$, and $A D$.
c) What shape is formed by joining these mid points?

3 Describe the directions you would give using co-ordinates, if you travelled from A to B along the path shown.

On a sheet of grid paper, plot the points: $A(2,6), B(4,-4), C(-6,-2)$
What are the co-ordinates of:
a) M, the mid-point of $A B$?
b) $\quad N$, the mid-point of $A C$?
c) What type of figure is NMBC?
d) How does the length of MN compare with $B C$?

Pg. 42

1) A cube

Pg. 43

2a) a quadrilateral
2b) (0,6), (5,2), ($1,-2$), (-4,2)
2c) parallelogram
3) Start at $(1,5)$ then go to $(2,1)$, then go to $(5,2)$ and then finish at $(4,3)$.

4a) $\quad \mathrm{M}(3,1)$
4b) $\quad \mathrm{N}(-2,2)$
4c) Trapezium
4d) a half

SECTION 6

TRANSFORMATIONS

TRANSFORMATIONS

A transformation is the movement of a shape from one position to another. The movement of shapes can be derived from three basic moves:
i) A reflection or flip is where a shape is reflected (or flipped) about a line, called the line of reflection, to a new position.

Old position
Line of reflection
New Position

The shape is just as far in front of the line of reflection as behind it. A good example of a reflection or flip is when you look in the mirror. So another way of describing a reflection is by calling it a mirror image.
*Note that the line if intersection may intersect the shape.

ii) A translation or slide is where a shape is translated or slid, to a new position.

For example:

Old position

New Position

The shape is not 'turned' or 'twisted' in any way and that the slide can be in any direction.

An example of a translation or slide would be an escalator in a shopping centre. People are translated from one level to another.

Old position
New Position

Another example would be children on a slide in a playground.

$\sqrt{7}$

iii) A shape may be rotated or turned.

For example:

*Note that the centre of rotation may be inside the shape.

Good examples of rotations or turns in the environment would be the fan blades of windmills. fans, propellers, etc.

Translations, rotations and reflections involve changes in location only and do not involve changes in size and shape. The shape is not changed, therefore the two shapes are congruent.

Note: A Mira or tracing paper would be helpful.
a)

d)

Mira

b)

c)

3. Rotate the following shapes about the given centre of rotation and direction to a new position (again tracing paper would be helpful).
a)

b)

90° Anti-clockwise
c)

270° Anti-clockwise
4. Classify the following movements as reflections, rotations or translations
a)

b)

c)

d)

e)

TRANSFORMATIONS Check

Point

5. In each of these sketches, the shaded flag has been moved to a new position. Decide in each case whether the transformation is a reflection, a rotation, a translation, or some combination of these. Use a mira, mirror, or tracing paper if you wish.
a)

b)

c)

d)

6. Show how the shape in each case can be moved from position 1 to position 2.
a)

b)

7. In summary, what information must be given for a shape to under go:
a) a reflection
b) a translation
c) a rotation

Pg. 49

Pg. 50
2a)

2b)

2c)

Pgs. 50-51
3a)

.C

3b)

3c)

Pg. 51

4a)	translation	$4 \mathrm{~b})$	rotation
4c)	reflection	$4 \mathrm{~d})$	reflection 4e)
translation	$4 \mathrm{f})$	rotation	

Pg. 52

5a) translation
5c) rotation and translation

5b) reflection and translation
5d) reflection, translation and rotation
6a)

translation
then rotation

rotation
then reflection

7a) the position of the line if reflection
7b) the direction and distance of the translation
7c) the centre and the angle of rotation

									-																	
											-			-												
													-		-											

SECTION 7

ANGLES

ANGLES

Measuring Angles

An angle is made up of two arms (or rays) and a corner (or vertex).

Figure 1
$\angle A B C$, or $\angle C B A$

Figure 1
$\angle \mathrm{DEF}$, or $\angle \mathrm{FED}$

Notice how the angles are named
$\angle A B C$ is a 'sharp' point
$\angle \mathrm{DEF}$ is a 'blunt' point
Angles are given particular names associated with their size.
Sharp angles between $0-90^{\circ}$ are called acute angles.

Blunt angles between $90^{\circ}-180^{\circ}$ are called obtuse angles.

The most common angle we use is the right angle or 90° angle. We see it where a floor meets the ceiling, in corners of rooms, in squares and rectangles, etc. The angles below are all right angles.

180° angles are straight angles.

Angles between $180^{\circ}-360^{\circ}$ are called reflex angles.

An angle can be measured using a protractor.
Semi-circular protractors may be found in many classes. However it makes more sense to use a full-circle protractor, when measuring reflex angles.

1. Write the correct label for each of these angles:

\qquad

\qquad

2. Estimate the size of these angles and write the type of angle next to each of them.
a)

d)

3. Now measure the actual size of each angle.
4. Construct each of these angles.
a) 90°
b) 82°
c) 125°
d) 173°

When two straight lines cross each other, there are pairs of angles formed. The opposite angles are always the same size. They are called vertically opposite angles. The 'vertically' refers to the vertex or the point where the lines cross each other.

Angle $a=$ Angle $b(\angle a=\angle b)$
Angle $c=$ Angle $d(\angle c=\angle d)$
5. Write the correct angle size for both of these.

Adjacent angles are two angles in the same plane with a common side and a common vertex (point). Angles JKM and MKL are adjacent angles.

Complementary angles are two angles that together make a right angle $\left(90^{\circ}\right)$. Angles DEF and FEG are complementary.

Supplementary angles are two angles that together make 180°; e.g. two right angles are supplementary; angles ABC and CBD are supplementary.

6. Name the size of these angles.
a)

b)

c)

7. What size are angles x, y and z ?

Check Point 1

1. Answers as per angles in pics.
2. Compare estimates with actual measures (below).
3. a) 37°
b) 242°
c) 27°
d) 89°
e) 90°
f) 119°
4. Correct angle sizes.
5. $67^{\circ} \quad 110^{\circ}$
6.

a) 40°
b) 37°
c) 156°
7. $\angle \mathrm{x}=52^{\circ} ; \angle \mathrm{y}=128^{\circ} ; \angle \mathrm{z}=52^{\circ}$

[^0]: * Euler's Law indicates the relationship between Vertices, Faces and Edges $V+F=E+2$

